Assessing the role of North Atlantic freshwater forcing in millennial scale climate variability: a tropical Atlantic perspective
نویسندگان
چکیده
This study analyzes a three-member ensemble of experiments, in which 0.1 Sv of freshwater was applied to the North Atlantic for 100 years in order to address the potential for large freshwater inputs in the North Atlantic to drive abrupt climate change. The model used is the GFDL R30 coupled ocean–atmosphere general circulation model. We focus in particular on the effects of this forcing on the tropical Atlantic region, which has been studied extensively by paleoclimatologists. In response to the freshwater forcing, North Atlantic meridional overturning circulation is reduced to roughly 40% by the end of the 100 year freshwater pulse. Consequently, the North Atlantic region cools by up to 8 C. The extreme cooling of the North Atlantic increases the pole-to-equator temperature gradient and requires more heat be provided to the high latitude Atlantic from the tropical Atlantic. To accommodate the increased heat requirement, the ITCZ shifts southward to allow for greater heat transport across the equator. Accompanying this southward ITCZ shift, the Northeast trade winds strengthen and precipitation patterns throughout the tropical Atlantic are altered. Specifically, precipitation in Northeast Brazil increases, and precipitation in Africa decreases slightly. In addition, we find that surface air temperatures warm over the tropical Atlantic and over Africa, but cool over northern South America. Sea-surface temperatures in the tropical Atlantic warm slightly with larger warm anomalies developing in the thermocline. These responses are robust for each member of the ensemble, and have now been identified by a number of freshwater forcing studies using coupled OAGCMs. The model responses to freshwater forcing are generally smaller in magnitude, but have the same direction, as paleoclimate data from the Younger Dryas suggest. In certain cases, however, the model responses and the paleoclimate data directly contradict one another. Discrepancies between the model simulations and the paleoclimate data could be due to a number of factors, including inaccuracies in the freshwater forcing, inappropriate boundary conditions, and uncertainties in the interpretation of the paleoclimate data. Despite these discrepancies, it is clear from our results that abrupt climate changes in the high latitude North Atlantic have the potential to significantly impact tropical climate. This warrants further model experimentation into the role of freshwater forcing in driving climate change.
منابع مشابه
LETTERS Simulated Tropical Response to a Substantial Weakening of the Atlantic Thermohaline Circulation
In this study, a mechanism is demonstrated whereby a large reduction in the Atlantic thermohaline circulation (THC) can induce global-scale changes in the Tropics that are consistent with paleoevidence of the global synchronization of millennial-scale abrupt climate change. Using GFDL’s newly developed global coupled ocean–atmosphere model (CM2.0), the global response to a sustained addition of...
متن کاملFreshwater forcing of abrupt climate change during the last glaciation.
Large millennial-scale fluctuations of the southern margin of the North American Laurentide Ice Sheet occurred during the last deglaciation, when the margin was located between about 43 degrees and 49 degrees N. Fluctuations of the ice margin triggered episodic increases in the flux of freshwater to the North Atlantic by rerouting continental runoff from the Mississippi River drainage to the Hu...
متن کاملCoherent Resonant Millennial-Scale Climate Oscillations Triggered by Massive Meltwater Pulses
The role of mean and stochastic freshwater forcing on the generation of millennial-scale climate variability in the North Atlantic is studied using a low-order coupled atmosphere–ocean–sea ice model. It is shown that millennial-scale oscillations can be excited stochastically, when the North Atlantic Ocean is fresh enough. This finding is used in order to interpret the aftermath of massive iceb...
متن کاملNorth Atlantic forcing of moisture delivery to Europe throughout the Holocene.
Century-to-millennial scale fluctuations in precipitation and temperature are an established feature of European Holocene climates. Changes in moisture delivery are driven by complex interactions between ocean moisture sources and atmospheric circulation modes, making it difficult to resolve the drivers behind millennial scale variability in European precipitation. Here, we present two overlapp...
متن کاملThe Impact of Tropical Atlantic Freshwater Fluxes on the North Atlantic Meridional Overturning Circulation
The influence of ENSO-related changes in the Atlantic-to-Pacific freshwater budget on the North Atlantic meridional overturning is examined using the University of Victoria (UVic) Earth System Climate Model. The initial analysis of freshwater fluxes in the 50-yr NCEP–NCAR (NCEP50) reanalysis product and Global Precipitation Climatology Project (GPCP) dataset reveals that the transport of water ...
متن کامل